$m^{\text {th }}$ LEVEL HARMONIC NUMBERS

Aung Phone Maw ${ }^{1}$ and Aung Kyaw ${ }^{2}$

Abstract

We define $m^{\text {th }}$ level harmonic numbers as a generalization of harmonic numbers. Then we construct the table of $m^{\text {th }}$ level harmonic numbers which is like the Pascal's triangle. A formula for $m^{\text {th }}$ level harmonic numbers containing binomial coefficients, as a generalization of Euler's formula for harmonic numbers, is also presented. From this formula, we also derive some relations between harmonic numbers and binomial coefficient.

$\boldsymbol{m}^{\text {th }}$ Level Harmonic Numbers

For a positive integer n, a harmonic number H_{n} is defined as $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Here we define $m^{\text {th }}$ level harmonic number as follows:

$$
H_{n}^{(0)}=1 ; H_{n}^{(m)}=\sum_{k=1}^{n} \frac{1}{k} H_{k}^{(m-1)} \text { for any positive integer } m .
$$

Since $H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k} \cdot 1=\sum_{k=1}^{n} \frac{1}{k} H_{k}^{(0)}=H_{n}^{(1)}$, one can see that $m^{\text {th }}$ level harmonic number is a generalization of a harmonic number.

Table of $\boldsymbol{m}^{\text {th }}$ Level Harmonic Numbers

From the definition of $m^{\text {th }}$ level harmonic number, $H_{n}^{(0)}=1$ and $H_{1}^{(m)}=1$. For every $n \geq 2$ we have

[^0]\[

$$
\begin{aligned}
H_{n}^{(m)} & =\sum_{k=1}^{n} \frac{1}{k} H_{k}^{(m-1)} \\
& =\sum_{k=1}^{n-1} \frac{1}{k} H_{k}^{(m-1)}+\frac{1}{n} H_{n}^{(m-1)} \\
H_{n}^{(m)} & =H_{n-1}^{(m)}+\frac{1}{n} H_{n}^{(m-1)}
\end{aligned}
$$
\]

From these facts we can construct the table of $m^{\text {th }}$ level harmonic numbers like Pascal's triangle as follows:

n	0	1	2	3	4
1	1	1	1	1	1
2	1	$\frac{3}{2}$	$\frac{7}{4}$	$\frac{15}{8}$	$\frac{31}{16}$
3	1	$\frac{11}{6}$	$\frac{85}{36}$	$\frac{575}{216}$	$\frac{1387}{491}$
4	1	$\frac{25}{12}$	$\frac{415}{144}$	$\frac{5845}{1728}$	$\frac{12456839}{3393792}$

In the above table, $H_{n}^{(m)}$ can be calculated as

$$
H_{n}^{(m-1)} \xrightarrow{\times \frac{1}{n}}{ }^{+} H_{n}^{(m)}
$$

$\boldsymbol{m}^{\text {th }}$ Level Harmonic Numbers and Binomial Coefficients
Euler's formula for harmonic numbers containing binomial coefficients is

$$
H_{n}=H_{n}^{(1)}=\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k}\binom{n}{k} .
$$

We will show that

$$
H_{n}^{(m)}=\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k^{m}}\binom{n}{k},
$$

this formula can be seen as a generalization of Euler's formula for harmonic numbers.

Proof. We will prove by induction.
When $n=1, H_{1}^{(m)}=1=\sum_{k=1}^{1}(-1)^{k+1} \frac{1}{k^{m}}\binom{1}{k}$.

When $m=0, H_{n}^{(0)}=1$ and

$$
\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k^{0}}\binom{n}{k}=\binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\binom{n}{4}+\cdots+(-1)^{n+1}\binom{n}{n}=1 .
$$

Therefore $H_{n}^{(0)}=\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k^{0}}\binom{n}{k}$.
Now we will show that the formula is true for $H_{n}^{(m)}, n \geq 2, m \geq 1$, by assuming that the formula is true for $H_{n-1}^{(m)}$ and $H_{n}^{(m-1)}$. Since $H_{n}^{(m)}=H_{n-1}^{(m)}+\frac{1}{n} H_{n}^{(m-1)}$, then
$H_{n}^{(m)}=H_{n-1}^{(m)}+\frac{1}{n} H_{n}^{(m-1)}$
$=\sum_{k=1}^{n-1}(-1)^{k+1} \frac{1}{k^{m}}\binom{n-1}{k}+\frac{1}{n} \sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k^{m-1}}\binom{n}{k}$
$=\sum_{k=1}^{n-1}(-1)^{k+1} \frac{1}{k^{m}} \frac{n-k}{n}\binom{n}{k}+(-1)^{n+1} \frac{1}{n \cdot n^{m-1}} \cdot 1+\sum_{k=1}^{n-1}(-1)^{k+1} \frac{1}{n \cdot k^{m-1}}\binom{n}{k}+$
$=\sum_{k=1}^{n-1}(-1)^{k+1} \frac{1}{k^{m}} \frac{(n-k)+k}{n}\binom{n}{k}+(-1)^{n+1} \frac{1}{n^{m}}$
$=\sum_{k=1}^{n-1}(-1)^{k+1} \frac{1}{k^{m}}\binom{n}{k}+(-1)^{n+1} \frac{1}{n^{m}}$
$H_{n}^{(m)}=\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k^{m}}\binom{n}{k}$

Harmonic Numbers and Binomial Coefficients

From the formula $H_{n}^{(m)}=\sum_{k=1}^{n}(-1)^{k+1} \frac{1}{k^{m}}\binom{n}{k}$, one can derive some relations between harmonic numbers and binomial coefficient as follows:

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{k} H_{k}=H_{n}^{(2)}=\sum_{k=1}^{n} \frac{1}{k^{2}}(-1)^{k-1}\binom{n}{k} \\
& \sum_{k=1}^{n} \frac{1}{k}\left(\sum_{i=1}^{k} \frac{1}{i} H_{i}\right)=\sum_{k=1}^{n} \frac{1}{k} H_{k}^{(2)}=H_{n}^{(3)}=\sum_{k=1}^{n} \frac{1}{k^{3}}(-1)^{k-1}\binom{n}{k} \\
& \sum_{k=1}^{n} \frac{1}{k} H_{k}\left(H_{n}-H_{k-1}\right)=\sum_{k=1}^{n} \frac{1}{k}\left(\sum_{i=1}^{k} \frac{1}{i} H_{i}\right)=\sum_{k=1}^{n} \frac{1}{k^{3}}(-1)^{k-1}\binom{n}{k} .
\end{aligned}
$$

Other formulas involving harmonic numbers and binomial coefficients can be found in $[1,2,3]$ and others.

References

1. J. Choi, Finite Summation Formulas involving Binomial Coefficients, Harmonic Numbers and Generalized Harmonic Numbers, J. Inequal. Appl. (2013) 2013:49
2. W. Chu and Q. Yan, Combinatorial Identities on Binomial Coefficients and Harmonic Numbers, Util. Math. 75 (2008) 51-66
3. M.J. Kronenburg, Some Combinatorial Identities some of which involving Harmonic Numbers, arXiv: 1103.1268v3 [math.CO] 12 Jan 2017

[^0]: 1. First year student, Department of Mathematics, University of Yangon
 ${ }^{2}$. Professor, Department of Mathematics, University of Yangon
