mth LEVEL HARMONIC NUMBERS

Aung Phone Maw¹ and Aung Kyaw²

Abstract

We define m^{th} level harmonic numbers as a generalization of harmonic numbers. Then we construct the table of m^{th} level harmonic numbers which is like the Pascal's triangle. A formula for m^{th} level harmonic numbers containing binomial coefficients, as a generalization of Euler's formula for harmonic numbers, is also presented. From this formula, we also derive some relations between harmonic numbers and binomial coefficient.

mth Level Harmonic Numbers

For a positive integer *n*, a harmonic number H_n is defined as $H_n = \sum_{k=1}^n \frac{1}{k}$. Here we define m^{th} level harmonic number as follows:

$$H_n^{(0)} = 1$$
; $H_n^{(m)} = \sum_{k=1}^n \frac{1}{k} H_k^{(m-1)}$ for any positive integer *m*.

Since $H_n = \sum_{k=1}^n \frac{1}{k} = \sum_{k=1}^n \frac{1}{k} \cdot 1 = \sum_{k=1}^n \frac{1}{k} H_k^{(0)} = H_n^{(1)}$, one can see that m^{th} level

harmonic number is a generalization of a harmonic number.

Table of *m*th Level Harmonic Numbers

From the definition of m^{th} level harmonic number, $H_n^{(0)} = 1$ and $H_1^{(m)} = 1$. For every $n \ge 2$ we have

^{1.} First year student, Department of Mathematics, University of Yangon

² Professor, Department of Mathematics, University of Yangon

$$H_n^{(m)} = \sum_{k=1}^n \frac{1}{k} H_k^{(m-1)}$$
$$= \sum_{k=1}^{n-1} \frac{1}{k} H_k^{(m-1)} + \frac{1}{n} H_n^{(m-1)}$$
$$H_n^{(m)} = H_{n-1}^{(m)} + \frac{1}{n} H_n^{(m-1)}$$

From these facts we can construct the table of m^{th} level harmonic numbers like Pascal's triangle as follows:

m n	0	1	2	3	4
1	1	1	1	1	1
2	1	$\frac{3}{2}$	$\frac{7}{4}$	$\frac{15}{8}$	$\frac{31}{16}$
3	1	$\frac{11}{6}$	$\frac{85}{36}$	$\frac{575}{216}$	1387 491
4	1	$\frac{25}{12}$	$\frac{415}{144}$	$\frac{5845}{1728}$	12456839 3393792

In the above table, $H_n^{(m)}$ can be calculated as $\begin{array}{c} H_{n-1}^{(m)} \\ \downarrow \\ H_n^{(m-1)} \xrightarrow{\times \frac{1}{n}} \\ + \\ H_n^{(m)} \end{array}$

mth Level Harmonic Numbers and Binomial Coefficients

Euler's formula for harmonic numbers containing binomial coefficients is

$$H_n = H_n^{(1)} = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k} \binom{n}{k}.$$

We will show that

$$H_n^{(m)} = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k^m} \binom{n}{k},$$

this formula can be seen as a generalization of Euler's formula for harmonic numbers.

Proof. We will prove by induction.

When
$$n = 1$$
, $H_1^{(m)} = 1 = \sum_{k=1}^{1} (-1)^{k+1} \frac{1}{k^m} {\binom{1}{k}}.$

When m = 0, $H_n^{(0)} = 1$ and

$$\sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k^0} \binom{n}{k} = \binom{n}{1} - \binom{n}{2} + \binom{n}{3} - \binom{n}{4} + \dots + (-1)^{n+1} \binom{n}{n} = 1.$$

Therefore $H_n^{(0)} = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k^0} \binom{n}{k}.$

Now we will show that the formula is true for $H_n^{(m)}$, $n \ge 2, m \ge 1$, by assuming that the formula is true for $H_{n-1}^{(m)}$ and $H_n^{(m-1)}$. Since $H_n^{(m)} = H_{n-1}^{(m)} + \frac{1}{n} H_n^{(m-1)}$, then

$$\begin{split} H_n^{(m)} &= H_{n-1}^{(m)} + \frac{1}{n} H_n^{(m-1)} \\ &= \sum_{k=1}^{n-1} (-1)^{k+1} \frac{1}{k^m} \binom{n-1}{k} + \frac{1}{n} \sum_{k=1}^n (-1)^{k+1} \frac{1}{k^{m-1}} \binom{n}{k} \\ &= \sum_{k=1}^{n-1} (-1)^{k+1} \frac{1}{k^m} \frac{n-k}{n} \binom{n}{k} + (-1)^{n+1} \frac{1}{n \cdot n^{m-1}} \cdot 1 + \sum_{k=1}^{n-1} (-1)^{k+1} \frac{1}{n \cdot k^{m-1}} \binom{n}{k} + \\ &= \sum_{k=1}^{n-1} (-1)^{k+1} \frac{1}{k^m} \frac{(n-k)+k}{n} \binom{n}{k} + (-1)^{n+1} \frac{1}{n^m} \\ &= \sum_{k=1}^{n-1} (-1)^{k+1} \frac{1}{k^m} \binom{n}{k} + (-1)^{n+1} \frac{1}{n^m} \\ &= \sum_{k=1}^{n-1} (-1)^{k+1} \frac{1}{k^m} \binom{n}{k} + (-1)^{n+1} \frac{1}{n^m} \end{split}$$

Harmonic Numbers and Binomial Coefficients

From the formula $H_n^{(m)} = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k^m} \binom{n}{k}$, one can derive some relations

between harmonic numbers and binomial coefficient as follows:

$$\sum_{k=1}^{n} \frac{1}{k} H_{k} = H_{n}^{(2)} = \sum_{k=1}^{n} \frac{1}{k^{2}} (-1)^{k-1} \binom{n}{k}$$
$$\sum_{k=1}^{n} \frac{1}{k} \left(\sum_{i=1}^{k} \frac{1}{i} H_{i}\right) = \sum_{k=1}^{n} \frac{1}{k} H_{k}^{(2)} = H_{n}^{(3)} = \sum_{k=1}^{n} \frac{1}{k^{3}} (-1)^{k-1} \binom{n}{k}$$
$$\sum_{k=1}^{n} \frac{1}{k} H_{k} (H_{n} - H_{k-1}) = \sum_{k=1}^{n} \frac{1}{k} \left(\sum_{i=1}^{k} \frac{1}{i} H_{i}\right) = \sum_{k=1}^{n} \frac{1}{k^{3}} (-1)^{k-1} \binom{n}{k}.$$

Other formulas involving harmonic numbers and binomial coefficients can be found in [1, 2, 3] and others.

References

- 1. J. Choi, Finite Summation Formulas involving Binomial Coefficients, Harmonic Numbers and Generalized Harmonic Numbers, *J. Inequal. Appl.* (2013) **2013**:49
- W. Chu and Q. Yan, Combinatorial Identities on Binomial Coefficients and Harmonic Numbers, Util. Math. 75 (2008) 51-66
- M.J. Kronenburg, Some Combinatorial Identities some of which involving Harmonic Numbers, arXiv: 1103.1268v3 [math.CO] 12 Jan 2017